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The problem of igniting gas by a body of finite heat capacity is solved by the
method of joining asymptotic expansions and, also, by numerical methods,
taking into account the reagent bumout and variation of heater temperature,
The space-time pattemn of temperature distribution is determined, and the law
of the igniter temperature variation established. Dependence of the ignition
time on characteristic parameters of the problem, such as the order of reaction,
the Lewis and activation numbers, thermophysical parameters of the heater,
etc. is established. It is assumed in the analysis that ignition takes place when
the heat flux through the igniter surface becomes zero, Results of numerical
solution of the input problem are compared with the approximate anaiytical
determiration, It is established that for § = E/ (BT} of order 20 they diff-
er by not more than 15 —20%; with increasing B the difference diminishes.

The problem of igniting 2 reacting medium by heat was considered in [ 1 ~8],
using various analytical {1, 8 —8] and numerical [2] methods,

i, Statement of the problem, Theone-dimensional problem of
igniting gas by means of 2 heated plate of finite thickness is defined on the usual sim-
plifying assumptions (see, e, g, [9]) by the following system of equations and boundary

conditions:
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where # iz the time, z is the space coordinate, R, is a characteristic dimension
of the heated body, T, is the temperature of the inert body, T is the temperat~
ure of gas, Y is the mass portion of the reaction product, n is the order of reaction,
As, ¢; and p; are the thermal conductivity, specific heat, and density of the inert
body (i = 1) andofgas (i = 2), @ isthe reaction heat effect, % is the
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preexponential factor, /1 is the universal gas constant, E is the activation energy,
T is the initial temperature of gas, and 7', the initial temperature of the bedy
(To — T E/(RT) >1). '
It is assumed that for the existence of sojution the heat emission function is non-
zero everywhere, except in the small temperature interval 7. <{ T << T, where
it is zero {9], and is determined by the formula

@ =kp" (1 —y)"expl— E/ (RT,)]

In the heat balance equation of the igniting Ielate the temperature distribution in-
side it is assumed uniform, i.e. T; (z, {') = T, (¢), which is fully justified when
the thermal diffusivity of the body A, / (py¢;) is fairly high,

We pass from variables (f', z) to variables (¢',+) using formulas )

m=—0p/0t, pp=>a9/dz5 (= Ry t') =0 (1.2

In the new variables the equation of continuity is ideatically satisfied, The remain-

ing relations in (1, 1) assume in dimensionless variables the form
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X=0,0(0,¢=a(,12), dy/0X =0

X = o0, 80,8 =0, gloo, ) =0

t=0,0(X,00=0,a(0)=1

0= (T, —TY/(Ty—T.), o=T-/(Ty—T), B=(E/RT,)

X=9/Az,t=t /At y=c(Ty—T2)/Q

(Az)® = hyAtpy | ¢y At = Py/[po™k exp (— B)l, L =hy/ (Dps c3)

o = Mp At/ {ep1RoAZ), a = (T, —T)/ (Ty—~TJ), T({H =
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where it is assamed that D0, and A.p, = const, since usually D ~ T2,
p~1/Tand A~ T; and ¢, = const. Asunits of the space coordinate and of
time we select the characteristic thickness of the zone of the steady combustion wave
warm-ap, and the characteristic time of the steady comubustion wave warm-up, res-
pectively,

2, Solution of the problem, Problem(l 3) will be solved by
numerical and approximate analytical methods. In the analytical investigation the
method of joining asymptotic expansions is used on the asumption of cousiderable act-
ivation energies (B >-1). The instant at which the heat flux from the heater to the
gas vanishes is taken as the instant of ignition, The approximate solution of problem
{1 3) is sought in the form of sum

(X, ) =06, (X, +u(X,1) (2.1
where function ©; defines the stage of passive warm-up, L. e.
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48, / 8t = 4%, /] 0X? (2.2
The solution of problem (2. 2) is of the form
0, = z.igg exp [—(;Xi/ T(; /(’t——'r))] a(x)dr (2.3
After substitution of (2. 1) into (1. 3) we obtain
% B+ B~y T @ exp (L) @9
& o1 B By T @ exp (L)

dT(; =0 [(%)xeo + (%>X=o]
©(0,t) =u(oo,t) =u(X,0 =0

Y (oo, t) = 0, (0y/0X)x=o = 0, ¥y (X,0) =0
a(0) =1

In the interval 0 < X < oo of variation of the variable we separate the region
adjacent to the heated plate surface (the boundary layer) in which we introduce the

variable z = BX. The term which defines the chemical reaction in the outer region
is exponentially small,

We seek the solution of problem (2. 4) in the inner and outer regions in the form of
expansions
w(X, 1) = Bl (2, 1) + §us (2, 1) + O (57) (@9
y(X, 1) = yo (2, 8) + By (2, ) + O (B7%)
a(t) =1+ pa; (t) + O (87
u(X, 1) =B (X, t) + B0 (X, 1) + 0 (B7) (2.6
y(X, ) =Y (X, 1) + B (X, 8) + O (B

In each of these regions the asymptotic expansions (2. 5) and (2, 6) must satisfy the

initial and boundary conditions. Congruence between the regions is established by the
condition of joining [10, 11].

For the principal terms of expansion in the inner region from (2, 4) —(2. 6) we have

8u,/02® + (1 — yo)" exp( R :/V?Z ) -0 (2.7
Pylox* = 0 (2.8)
da,/dt = @, [—(nt)""7> + (Ouy/02)xmp) (2.9

u; (0, ) = uy (2, 0), (8Yo/02)xmg = 0, a; (0) =0

It follows from Eq, (2.8) and the boundary condition at £ = ( that ¥, = y, (¢).
The general solution of Eq, (2. 7) is of the form
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m@Et)=z/Vat —a@) +(1+0)[—nln(l—y) +InCy — (210
2lnch(C; +2V G/ RUT+0) 1

and the boundary condition for uy (0, t) yields
U0, ) =—a W +A+0)l—nln(d —y) +InC, — (21D
2lnch 1 =0
ch? C; = (1 — yo ()" exp (— ay ()/(1 + 0)) C (2)
For the temperature gradient at the igniter surface from formula (2. 10) we obtain

(08/02)xmg = — ()2 F (1) (2.12
F () = l—2=n 1+ syt {1 — Yo)" exp {31/(1 + G))]'/!

which shows that the heat flux vanishes when the radicand of (2. 12) becomes zero,
At that instant the inert body is transformed from a source to a sink; in accordance with
the definition given above, we take this instant as the instant of ignition, The equat-
ion for the determination of the instant of ignition is of the form F () = 0 (in the
second of formulas (2, 12) Yo (¢) and a; (¢} are unknown functions).

Taking into account (2, 12) we represent Eq. (2.9) in the form

da,/dt = — a, (at)-+ F (2) (2.13)
For joining the principal terms of the inner and cuter expansions (2. 5) and (2. 6),

respectively, from (2, 10) we have the following asymptotic expression for u; with
z— 0!

u(z— oo, ) =zl(t)s — 21 +0) G+ 1) +0(1) (214

fO)=1+0)[—nln(1—y)+ICyp—2C, 4 Indl —
a, (¢)

Since for z — o , the temperature must be finite, hence

=1/(2nt(1 + o), Cy = t/t, T, = /2 n (1 4 o))
Condition (2, 14) is the boundary condition for solving the problem in the outer re~
gionas X — 0. It follows from (2.4) and (2, 6) that solutions in the outer region
must satisfy the following equations and boundary conditions:

dv,/ot = 3*vy/aX? (2. 15
(X =>0,8)=7(t), v, t)=v(X,00=0
Y Jot = L7'@Y JoX? (2. 16)

Yo (X —=0,t) =y (t)y Yo(oo,8)=Y,(X,0) =0
The solution of problem (2. 15), (2. 16) is of the form

exp {—- X2/ Gt—iN] o (2.1
v (X, = 2V—§f ®) AL 4
xri n OXP[— X3/{4(t~ D] 4, (2.18)
Yo(X,0) = Ve Syo ) Gy dt
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For X -~ 0 from (2.18) we have

k4

4 , 2.19

Yo(X, 1) = %o (t) — = %ﬁ Barrox- &9
0
}

Va
ym~mV—%§Mf +0(EY

Formmla (2. 19) makes it possible to obtain the asymptotic expression for y;(z, t)
which is the second term of asymptotic expansion for concentration in the inner region,
From (2. 4), (2.5) we obtain

L7132y | 828 — 0%, [ 02 = 0, (8y1/0%)xmo = 0

which is accurate to terms B~1. After integration we have

L*l%}' - aul = Cs (t), (.@L)xmo =0 G (t) =Y (ﬂ)xao

ox az
consequently,
3y, duy iy ]
S e i (3, ,
From Eq, (2.19) we obtain the asymptotic exprestion for y, (z = o0, t)
L 3 ¥ (t} (2.2
he=—2V =% Vg_o_—.:_;_' de’

We pass in Eq, (2. 20) obtained when solving the inner problem, to the outer limit
Z —> 00, From (2. 12), (2.22), and (2. 23) we have (%

dy1 ] 0z = — Ly (0u1/0x)x—y (2.22
and from (2, 10)

6u1 ‘lfo i " i 1)y
(az x,.a {Vt __V’«‘- L — (L —yo)"exp (a,/( +o‘)):} }
9
Formula (2, 22) in dimensionless variables is of the form

{2.29

T
5=\ v = e[ — Ga ()]

dt T — T

H
G, (1) = /v — (1 — yy)" 7?15
o=—z2(1+0),T=1t, e=yVL

The equation for the heater temperature variation is of the form

*) Editor's Note. Thereis an obvious error in the Russian text in the num-
bers of equations (Egs. (2.12), (2.22), and (2, 23)) referred to in this sentence, Att-
ention of the Russian Editor of PMM has been drawn to this, A correction will be issu~
ed as soon as received from him,
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dzldt = 8G, (z), 6§ = aB (1 + o) (vo/n)h (2,29

Thus the approximate analysis of problem (2, 4) using the method of joining asym-
ptotic expansions yields the system of Eqs. (2. 23) and (2. 24) for the time of ignition,
concentration distribution in the gas and the igniting body temperature.

Equations (2.23) and (2.24) are valid in the interval 0 <C T <C Tygp  (Tign is
the dimensionless ignition time).

Having determined ¥, (¢) and z (£) we obtain from formulas (2, 10), (2. 17),(2. 18)
Uy (z, £), v (X, t) and Y, (X, ¢), i.e. the total solution of the problem in the first
approximation from the instant at which the heat source begins to operate up to the
ingtant of ignition,

Equations (2.23) and (2, 24) show the ignition time depends on three dimensioaless
parameters 8§, e, and n, which considerably simplifies the problem in
comparison with its original formulation by (1, 15) and (1. 20) which comprises six di-
mensionless combinations of L, a, B, n, ¥, and 0.

The particular case of § = () in which <
Eqs.(2. 23) and (2. 24) define the igniting of 4t
gas by a heated plate maintained at coastant
temperature was considered in {8]; for ¢ =0
these equations relate to the problem of
igniting gas by a body of finite heat content

{ n 2

without allowance for the reagent burn-up 1.0
(61
4.
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Equations (2. 23) and (2. 24) were solved by numerical methods. The dependence
of Tign onparameters & 1, and & obtained by that method is shown in Fig,1—3.
The lower curves I and 2 in Fig. 1 correspond to § = 0.088 and 0,77, respectively,
and show that with increasing & the ignition time increases, Physically this is relat-
ed to the increase of bumn-up with increasing &; since the reaction rate is determined
by the law (1 — yo)" exp [— E/(RT,)], the temperature increase is slowed down
with increasing burn-up and the ignition time lengthens.

The upper curves 7 and 2 which in Fig. 2 correspond to 3 = 20 and 30, respect-
ively, show that with increase of the reaction order the ignition time sharply increases,
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which is also related to the increase of burn-up.

The lower curves I and 2 which in Fig. 2 correspond to B = 20 and B = 80,
respectively, show the behavior of numerical solutions of system (2, 23), (2. 24) of the
ignition curve in dependence of the Lewis number L = A/(Dpc) for two values of B.
The characteristic values of L for gases are of order unity,

With decreasing [ the quantity T;,, diminishes, which is related to that in this
case the diffusion influx of fresh fuel increases and the effect of bum-up is decreased.
Since the reaction rate obeys the lay @ ~ exp [— E/(RT)], hence the temperat-
ure increase is more rapid and the ignition time is lengthened.
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Fig.3 Fig. 4

All of the above examples dealt with cases in which ignition always takes place.
However, situations are possible in which the outflow from the heat source exceeds
the heat release rate dependent on chemical transformation, and ignitiondoesnotoccur.
Let us consider such case, assuming for simplicity that the reaction is of zero order
so that for 0 <{ y <C 1 the chemical reaction rate is %k exp [— E/(RT)] and van-
ishes for y > 1.

The dependence of Tign on O obtained by numerical integration of Egs. (2, 23)
and (2.24) with n = O appears in Fig, 3 which shows that the ignition time lengthens
with increasing § . There exists a 8% such that for § >> 8* ignition does not occur.
Note that all results must be taken in the asymptotic sense, Since for 8 > 8% the
ignition time is considerable in comparison with unity and the asymptotic investigat-
ion covers times of the order of unity relative to 3, hence in the considered approx-
imation no ignition occurs when § >> 8*, The critical value § = §* determined by
numerical integration is 8* = (.57,

For fairly large ¢ 2 complete burn-up may occur prior to ignition, Variation of
the concentration fields within the time up to the ignition instant is shown in Fig, 4 for
several 8, where curves I — 3 comrespond to & = 0.4, 0.3, and

0.5, respectively. There exists an & = g* for which ¥ becomes equal unity be-
fore ignition takes place, The dependence of &* on § isshown in Fig.3. For ¢
lying above g* total burn-up occurs before ignition, while for & < a*ignition takes
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place prior to the bum=-up, For £ lying on the curve ignition and total bum-up occur
simultaneously.

The accuracy of asymptotic methods in their application to problems of ignition
was tested by solving Egs. (1,3) numerically. The method of " calculation with re-
calculation” [12] was used, Results of calculations by approximate analytical methods
are shown in Fig.5 for n = { and @ = 10™? and compared with those derived by
numerical methods which appear in Fig, 1, where the upper curves 7 and 2 corres-
pond to the approximate analytical and numerical methods, respectively; in both fig-
ures the curves show the dependence of ignition time on .

As expected, the accuracy of calculat-

Tign J ions increases with the increase of 3. The
\ difference between the approximate analy-
235 tical and exact numerical calculstions for
\ B = 20 is about 20% which with increas-
\ ing B diminishes to 5 —10%. Note that
0.3 only the principal terms of expansion were

determined here. When subsequent expan-
sion terms are taken into account, the dis-

8.25 7 W0 parity between data obtained by the two '
P methods diminishes.
Fig. 5 The obtained good agreement between

the results of the two methods indicates
that the use of the method of joining asymptotic expansions is promising also for other
problems of combustion.
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