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The problem of igniting gas by a body of finite heat capacity is solved by the 
method of joining asymptotic ~~s~uns and, also, by numerical methods, 
taking into account the reagent burnout and variation of heater temperature, 
The space-time pattern of temperature distribution is determined, and the law 
of the igniter temperature variation established. Ikptndence of the ignition 
time on characteristic parameters of the problem, such as the order of reaction, 
the Lewis and activation numbers, thermophysical parameters of the heater, 
etc. is established. It is assumed in the analysis that ignition takes place when 
the heat flux thro4zgh the igniter surface becomes zero, Results of numerical 
solution of the input problem are compared with the approximate anafytical 
determination. It is established that for fi * E / (AI’d of or&r 20 they diff- 
er by not more than 35 -.2@~ with increasing g the difference diminishes. 

The problem of igniting a reacting medium by heat was considered in [ l-81, 
using various analytical [l, 3 -81 and numerical [2] methods, 

1, Statement of the problem, Theone-dimensionalproblemof 
ignit$rrg gas by means of a heated plate of finite thickness is defined on the usual sim- 
plifying assumptions (see, e, g, [9] ) by the following system of equations and boundary 
conditions: 

where t’ is the time, z is the space coordinate, fia is a characteristic dimension 
of the heated body, T, is the temperature of the inert body, 7s is the temperat- 
ure of gas, y is the mass portion of the reaction product, n is the order of reaction, 
ii,i, ci and pi are the thermal conductivity, specific heat, and density of the inert 

body (i = 1) and of gas (f = 2), Q is the reaction heat effect, k is the 
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preexpaentfal factor. R is the univeeal. gas constant, E is the activation energy* 
T- is the initial temperature of gas, and T, the initial temperature of the body 

((Tel - T_) E f WV) > 1). 
It is assumed that for the existence of solution the hoot emission functica is non- 

zero everywhere, except in the small temperature interval T, < T ( Ta, where 
it is zero [91, and is determined by the formula 

if, = kpsn (2 - y)” exp I - E i (K&)3 

In tka heat balance equation of the ignitine late the temperature distribution in- 
sfde it is &$umed uniform, i.e. T, (z, t’) = I I (% which is fully justified when 
the thermal diffisivity of the body h, / (p$,) is fairly high. 

We pnarr from variables (t’, z) to variables (t’, 9) using farm&as 

m = - i3\p I W, ps = CC& i dz, q? (z s= R,, b’) = 0 fL21 

In the new variablea the equation of continuity is id&WaUy satis&& YW remain- 
ing relatiiaas in (1.1) atulme in dimeMonk variabie8 the form 

ae a% 
at = 3x9 - -I- IJ (1 - ?I)” r PI exp @ (0 - 11 I@ -k @I (1.3) 

%f _&-Iz& 
at -I- Br (1 - Y)” f (6) eW IF (f-f - 1) f (6 f @)l 

& / dt = tc (as / dX)J&* 

x = 0, 0 (0, t) = a (0, t), dy / BX = 0 

X = 1x1, B (00, t) = 0, y (CY), t) = 0 

t = 0, tf (X, 0) = 0, ti (0) = -1 

8 = (T, - T_) i (T, - T-j, cf = T-i (T, - T,), B = (E / RTi,) 

X=glAx,t= t’ I At, y = c$ (To - T,) I Q 

(A$>’ = h,Atp, / c2, At = py I Ip,*‘k exp (- fi)l? L = h, / (Dp, c2) 
cz, = h,p,At / ~~~~~~*A~~~ a = (T, - T-f : (T, - T-f, I? (it = 

(P i Ptr’7 PO = P iT*l 

where it is assumed that DP,” and Lp, = const, since usually D - Tz, 
P” 1 I T and h - T; and c2 = car&i. As units of the space coordinate and of 
time we select the characteristic thickness of the zone of the steady combustion wave 
warmq?, and the characteristic time of the steady cumubuOtron wave warmup, res- 
pectivefy, 

2. Solution of the problem. Problem(r.3)willbe~Jlved by 
numerical and approximate analytical methods. In the analytical invesMgdMon the 
method of joining asymptotic expaodons is used @n the ammption of consibarable.act- 
ivason energier @ > 1). The i&ant at which the heat flux from the heater to the 
gas va ib taken as the i&ant of ignitWk_ The appmmaie s&Son of p&la 
(1.31 is sought in the fozm of mm 

0 (X, t) = 6% (X, t) +- u (X, t) (2. U 

where function 61 defines the stage of pWive warm-up, i. en 
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as* I at = a2ai I 8X2 

The solution of problem (2.2) is of the form 
t 

@ - J_ s @XP [-X2 I(4 (r - 01 o (x) dt 
2Vn 

0 
(t - zp 

After substitution of (2.1) into (1.3) we obtain 

&L 

at - ax= 
2% + /3 (1 - y)” I? (9) exp ( ’ (” + ’ - *) ) 

C)i+u+a 

ay _ L-1 a2Y m + Bv (1 - ?#r ((9 f=P ( y$+uu;*) ) 

; z u[(~)x=o + (gx=,l ’ 

( 2.2) 

(2.3) 

(2.41 

u (0, t) = u (00, t) = u (X, 0) = 0 

Y (00, t) = 0, (ay/~x)x~o = 0, y (X, 0) = 0 

a (0) = 1 

In the interval 0 < X < 00 of variation of the variable we separate the region 
adjacent to the heated plate surface (the boundary layer) in which we introduce the 
variable z = PX. The term which define the chemical reaction in the outer region 
is exponentially smalL 

We seek the solution of problem (2.4) in the inner and outer regions in the form of 
f3Xp2UlSiOnS 

u (X, t) = p-‘ul (5, t) + p-2u: (2, t) + 0 (p-3) 
(2. 5) 

Y (X9 t) = Yo (x9 t) + P”YI (G t) + 0 @-“) 

a PI = 1 + B% w + 0 tp-2) 

u (X, t) = p-Is (X, t) + pr2u2 (X9 t) + 0 (/3-q (2. 6) 

Y (X* t) = yo (X, t) + py, (XI t) + 0 Q-2) 

In each of these regions the asymptotic expansions (2.5) and (2.6) must Ytisfy the 
initial and boundary conditions. Congruence between the regions is established by the 
condition of joining [lo, 111. 

For the principal terms of expansion in the inner region from (2.4) - (2.6) we have 

( 
- x/Jfz d2u&3x2 + (1 - yO)” exp a1 + “1’ + 5 

> 
= 0 (2. 7) 

asy,/axs = 0 (2.5) 

da,ldt = 010 [-(nt)-+ + (du,ldx),,l (2.9) 

Ul (0, q = u1 (x9 O), (~yo/ds),~ = 0, a, (0) = 0 

It follows from Eq. (2.8) and the boundary condition at 2 = 0 that y. = y, (t). 
The general solution of Eq. (2.7) is of the form 
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241 (x, t) = x f v’z -~1(t)+(1.+fT)t--ln(l-~y,)+InC*- (2.10) 

Zlnch(Czts~Ca1(2(1+a)) I 

and the boundary condition for u1 (0, t) yields 

uy (0, t) = - a1 (t) + (1 4 CT) I-- Ib In (1. - y*) f In Cz - (2.11) 

2 In ch C,l = 0 

eh2 C, = (1 - YO WY e=p C-- al WV + 4) G @I 

For the temperature gradient at the igniter lrurface from formula (2.10) we obtain 

(ae/&&,, = -(qt)“z F (t) (2. la) 

F (t) = I4 - 2 n (1 + a) t (1 - EAT exp W(f f 4)W 

which shows that the heat flux vanishes when the radicand of (2.12) becomes zero. 
At that instant the inert body is transformed from a source to a sink; in accordance with 
tbe definitirjn given above, we take this fmtant aa the in&ant of ignition. The equat- 
ion ibr the detzer~tion of the instant of ignition it of the form F (tf = 0 (in the 
second of formulas (2,121 go (t) and a, (tf are unknown ~ne~~~. 

Taking into account (2.12) we represent Eq. (2.9) in the form 

du,/dt = - a, (nt)+ F (t) (2.13) 

For joir&g the principal terms of tht inn&r and outer expansions (2.5) and (2.6). 
respectively, fkom (2. I.01 we have the foWwing asymptotic exprusion fox UL with 
x3 a3: 

u1 (z -f 00, t) = 5 f(nt)-+* - (2 (4 + a) G#*l f f (t) + 0 (4) (2.14) 

f (t) = (1 -j- a) f- n In (1 - y*) + In ca - 2 Cl + In 41 - 

a, (a 

Since for x 3 ixf , the temperature must be finite, hence 

cz = l/(2 nt (1 + (T)), Cg = zdt, ~0 = 142 ax (1 + a)) 
Condition (2.14) is the boundary condition for solving the problem in the outer re- 

gion as X 3 0. It follou$ from (2.4) and (2.6) that solutions in the outer region 
must sati@ the foliowing eiquativru and bcamdary conditlona: 

~u~/~t = ~V~f~~ (2.15) 

Vl (X 4 0, t) = f (t), Vl(oo, t) = v1 (X, 0) = 0 

avdat = LVY&X2 (2. 161 

Y, (X 3 0, t) = Yo (G.l yo (=I t) =Y,(X,O) =o 
The sofvtfon of problem (2.15), (2.16) is of the form 

1 
(2.17) 

(2.18) 
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For X -+ 0 from (2.18) we have 

Formula (2.19f makes it possible ta obtain the asymptotic expression for y, (5, t) 
which is the second term of asymptotic expansion for concentration in the inner region, 
From (2.41, (2.5) we obtain 

L-‘@yx / a.Cs - +, / dxs = 0, (dyx / d.&pso = 0 

which is accurate to terms fi’l. After integration we have 

L-l* _ Y.Jg = c3 (a ($gzil() = 0; c3 (0 = - Y (+),, 

From I$ (2.19) we obtain the asymptotic exprudan for y, (5 + oo, t) 

( 2,201 

(2.21) 

We pass in Eq. f2.201 obtained when solving the inner problem, to the outer limit 
x-4 00. From (2.12), (2.221, and (2.23) we have (L) 

&Jr/ax = - LY (~M%=S 0 
(2.22) 

and fkm (2.101 

Formula (2.22) in dimensionless variables is of the form 

&I w = II/z - {I - y,)% e?-‘~~ 

a, = - 2 (1 $ CT), T = t/q), 8 = y l/E 

The equation for the heater temperature variation is of the form 

l I E d i t a r * s N o t e. There is an obvious error in the Russian text in the nnm- 
hers of equations (Eqs, (2.12), (2.22). and (i. 23)) referred to in this sentence, Att- 
ention of the Msian Editor of PMM has been drawn to this. A correction will be issu- 
ed as soon as received from him. 
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dzldz = 6G, (z), 6 = ap (1 + CT)-1 (z,ln)‘~* ( 2,241 

Thus the approximate analysis of problem (2.4) using the method af joining asym- 
ptotic expansions yields the system of Eqs. (2.23) and (2.24) for the time of ignition. 
concentration dfttribution in the gas and the igniting body temperature. 

Equations (2.23) and (2.24) are valid in the interval 0 < z < rign ~~~~~ is 
the dimensionless igtition time). 

Having determined PO (t) and z (t) we obtain from formulas (2. lo), (2.17)X2.13) 
ur (2, t), VI (X, t) and Y, IX, t), ie. the total soiution of the problem in the first 

app~ima~oo from the instant at which the heat source begins to operate up to the 
instant of ignition. 

Equations (2.23) and (2.24) show the ignition time depends on three dimensionless 
parameters 6, e, and n, whf& considerably simplifies the problem in 
comparison with its original formulation by (1.15) and (1.20) which comprises six di- 
mensionlesa combinations of L, a, /3, n, y, and CL 

The particular case of 6 = 0 in which 
f n 1 

Eqs.(Z. 23) and (2,241 define the igniting of 
gas by a heated plate maintained at constant 
tempera&e was considered in [883; for e = 0 
these equations relate to the problem of 
bang gas by a body of finite heat content 
with& allowance for the reagent bum-up 

IN. 

Fig. 1 
Fig. 2 

Equations (2.23) and (2.24) were solved by numerical methods, The dependence 
of %,n on parameters e, n, and 6 obtained by that method is shown in Flg,l-3. 
The lower cwws 2 ami 2 in Fig. I correspond to 8 = 0.088 and 0.77, respectively, 
and show that with increasing e; the ignition time increases. Fhysicatly this is relat- 
ed to the increase of bum-up with increasing e; since tie reaction rate is determined 

by the law (1 - ye)” exp [- E/(flT,)], the temperature increase is @owed down 
with incwring bum-up and the igtitioa time Wigtbw. 

The upper CWV~S f and 2 which in Fig. 2 correspond to p = 20 and 30, resWft- 
iv&y, show that with increase of the reaction order thu ignition time sharply increases, 
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which is also related to the increase of bum-up. 
The lower curves f and 2 which in Fig. 2 correspond to p = 20 and p = 80, 

respectively, show the behavior of numerical solutions of system (2.231, ( 2.24) of the 
ignition curve in dependence of the Lewis number L = ix/(&c) for two values of p. 
The characteristic values of L for gases are of order unity. 

Wi~dec~~~g L the quantity qgn diminishes, which is related to that in this 
case the diffusion influx of fresh fuel increases and the effect of bum-up is decreased. 
Since the reaction rate obeys the lay CD .- exp [- EI(RTJ1, hence the temperat- 
ure increase is more rapid and the ignition time is lengthened. 

Fig. 3 Fig. 4 

All of the above examples dealt with cases in which ignition always takes place. 
However, situations are possible in which the outflow from the heat source exceeds 
the heat release rate dependent on chemical tra~formati~, and ignitiond~ not occur. 
Let us consider such case, assuming for simplicity that the reaction is of zero order 
so that for 0 < y < 1 the chemical reaction rate is k exp [- E/(RTs)l and van- 
Ishesfor y> 1, 

The dependence of ‘t& on 6 obtained by numerical integration of EQ. (2.23) 
and (2.24) with n = 0 appears in Fig. 3 which shows that the ignition time lengthens 
with increasing 6 . There exists a 6* such that for 6 > 6* ignition does not occur. 
Note that all results must be taken in the asymptotic sense. Since for 6 > 6” the 
ignition time is considerable in comparison with unity and the asymptotic investigat- 
ion covers times of the order of unity relative to p, hence in the considered approx- 
imation no ignition occurs when 6 > 6”. The critical value 6 = 6* determined by 
numerical integration is 6* = 0.57. 

For fairly large E a complete burn-up may occur prior to ignition. Variation of 

the concentration fields within the time up to the ignition instant is shown in Fig. 4 for 
several 6, where curves I - 3 correspond to 
0.5, 

6 = 0.1, 0.3, and 
respectively. There exists an E = e * for which y becomes equal unity be- 

fore ignition takes place. The dependence of E* on 6 is shown in Fig. 3. For E 
lying above E* total burn-up occurs before ignition, while for E < &*ignitionbkes 
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place prior to the bum-up, For 53 lying on the cum6 ignition and total bum-up occur 
si~l~n~~y. 

The accuracy of asympt43tic methods in their application to problems of ignition 
was tested by soolving Eqs. (1.3) numericaUy, The method of ” calculation tith re- 
calculation”’ [323 was used, Results of calculatioas by approximate anaiyticai methods 
are &own in Fig. 5 for n = 1 and a = f0” and compared with those dedved by 
numtricar methods which appear in Fig. 1, where the upper curves I and z corms- 
pond to the approximate anafyticaf and numerLca1 methwt*, re$pe&vely; in both fig- 
ures the cwves shcw the dependence of ignition time on p. 

As expected, the accuracy of calculat- 
ions increases with the increase of a. The 
diff~tbehreut~tapprori~~t~~y- 
tical and exact numericat calculations for 
8 = 20 is about 20% which with increas- 

ing p dimin&$res to 5 -10%. Note that 
only the priMpal terms of eqlursion were 
determined here. When subsequent expan- 
sion turn0 are taken into account, the dis- 
parity between data obtained by the two 
methods diminishes. 

Fig. 5 The obtalnod good agreement between 
the results of the two methods indicates 

that the use af the lntffaod of joining asymptotic expanitous is pro&sing also for other 
problems of combustiom 
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